lunes, 16 de mayo de 2011

¿Qué es la Radiactividad?









La radiactividad o radioactividad es un fenómeno físico natural, por el cual algunos cuerpos o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz, etc

La radiactividad ioniza el medio que atraviesa. Una excepción lo constituye el neutrón, que no posee carga, pero ioniza la materia en forma indirecta. En las desintegraciones radiactivas se tienen varios tipos de radiación:alfa, beta, gamma y neutrones.

La radiactividad puede considerarse un fenómeno físico natural por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluoresencia, atravesar cuerpos opacos a la luz ordinaria, etc. Debido a esa capacidad, se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma o bien corpusculares, como pueden ser núcleos de helio, electrones o prositones, protones u otras. En resumen, es un fenómeno que ocurre en los núcleos de ciertos elementos, que son capaces de transformarse en núcleos de átomos de otros elementos.La radiactividad es una propiedad de los isótopos que son "inestables", es decir, que se mantienen en un estado excitado en sus capas electrónicas o nucleares, con lo que, para alcanzar su estado fundamental, deben perder energía. Lo hacen en emisiones electromagnéticas o en emisiones de partículas con una determinada energía cinética. Esto se produce variando la energía de sus electrones (emitiendo rayos X ) o de sus nucleones (rayo gamma) o variando el isótopo (al emitir desde el núcleo electrones, positrones, neutrones , protones o partículas más pesadas), y en varios pasos sucesivos, con lo que un isótopo pesado puede terminar convirtiéndose en uno mucho más ligero, como el uranio que, con el transcurrir de los siglos, acaba convirtiéndose en plomo.

La radiactividad se aprovecha para la obtención de energía nuclear se usa en medicina (radioterapia y radiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades, entre otras).

La radiactividad puede ser:

  • Natural: manifestada por los isótopos que se encuentran en la naturaleza.
  • Artificial o inducida: manifestada por los radioisótopos producidos en transformaciones artificiales.


Ventajas y Desventajas

  • Ventajas:
- Positiva en la medicina, pues a través del desarrollo del laser, se genera cierta radioactividad capaz de tratar o eliminar tumores u otros problemas degenerativos.

- El Carbono 14, elemento radioactivo que se encuentra en nuestro medio ambiente, permite determinar la edad de fósiles.

- La que se genera con miras a la consecución de energía nuclear en servicio a la industria y de las actividades propias de la urbe, con el uso de plutonio.
  • Desventajas:
-De tipo degenerativo y contaminante para los seres vivos ( cáncer, tumores, malformaciones, y disfunciones en todo el organismo) que pueden ser heredadas de generación tras generación.

- La que generan las bombas atómicas ( Iroshima y Nagasaki 1945), dejan destrucción y secuelas degenerativas en su población. Así mismo, las pruebas en islas u otros territorios de bombas atómicas.





Beneficios:
































Consecuencias:





















































Clases y Componentes de la Radiación:



Se comprobó que la radiación puede ser de tres clases diferentes, conocidas comopartículas, desintegraciones y radiación:

  1. Partícula alfa: Son flujos de partículas cargadas positivamente compuestas por dos neutrones y dos protones (núcleos de helio). Son desviadas por campos eléctricos y magnéticos. Son poco penetrantes, aunque muy ionizantes. Son muy energéticas. Fueron descubiertas por Rutherford, quien hizo pasar partículas alfa a través de un fino cristal y las atrapó en un tubo de descarga. Este tipo de radiación la emiten núcleos de elementos pesados situados al final de la tabla periódica (A >100). Estos núcleos tienen muchos protones y la repulsión eléctrica es muy fuerte, por lo que tienden a obtener N aproximadamente igual a Z, y para ello se emite una partícula alfa. En el proceso se desprende mucha energía, que se convierte en la energía cinética de la partícula alfa, por lo que estas partículas salen con velocidades muy altas.
  2. Desintegración beta: Son flujos de electrones (beta negativas) o positrones(beta positivas) resultantes de la desintegración de los neutrones o protones del núcleo cuando éste se encuentra en un estado excitado. Es desviada por campos magnéticos. Es más penetrante, aunque su poder de ionización no es tan elevado como el de las partículas alfa. Por lo tanto, cuando un átomo expulsa una partícula beta, su número atómico aumenta o disminuye una unidad (debido al protón ganado o perdido). Existen tres tipos de radiación beta: la radiación beta-, que consiste en la emisión espontánea de electrones por parte de los núcleos; la radiación beta+, en la que un protón del núcleo se desintegra y da lugar a un neutrón, a un positrón o partícula Beta+ y un neutrino, y por último la captura electrónica que se da en núcleos con exceso de protones, en la cual el núcleo captura un electrón de la corteza electrónica, que se unirá a un protón del núcleo para dar un neutrón.
  3. Radiación gamma: Se trata de ondas electromagnéticas. Es el tipo más penetrante de radiación. Al ser ondas electromagnéticas de longitud de onda corta, tienen mayor penetración y se necesitan capas muy gruesas de plomo u hormigón para detenerlas. En este tipo de radiación el núcleo no pierde su identidad, sino que se desprende de la energía que le sobra para pasar a otro estado de energía más baja emitiendo los rayos gamma, o sea fotones muy energéticos. Este tipo de emisión acompaña a las radiaciones alfa y beta. Por ser tan penetrante y tan energética, éste es el tipo más peligroso de radiación.

Las leyes de desintegración radiactiva, descritas por Frederick Soddy y Kasimir Fajans, son:

  • Cuando un átomo radiactivo emite una partícula alfa, la masa del átomo (A) resultante disminuye en 4 unidades y el número atómico (Z) en 2.
  • Cuando un átomo radiactivo emite una partícula beta, el número atómico (Z) aumenta o disminuye en una unidad y la masa atómica (A) se mantiene constante.
  • Cuando un núcleo excitado emite radiación gamma, no varía ni su masa ni su número atómico: sólo pierde una cantidad de energía (donde "h" es la constante de Planck y "ν" es la frecuencia de la radiación emitida).

Las dos primeras leyes indican que, cuando un átomo emite una radiación alfa o beta, se transforma en otro átomo de un elemento diferente. Este nuevo elemento puede ser radiactivo y transformarse en otro, y así sucesivamente, con lo que se generan las llamadas series radiactivas.


No hay comentarios:

Publicar un comentario